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Abstract  
The Equation of State (EOS) of pure neutron matter at zero temperature is calculated up to five 
saturation densities within the Brueckner theory with the inclusion of three-body forces. Three 

different realistic and accurate two-body forces are considered to evaluate the G-matrix effective 

interaction for nuclear matter. These models are the chiral N
3
LO, the CD-Bonn and the Argonne 

V18, which give quite different EOS. Two types of three-body forces are included to the effective 

interaction, which might be important at densities several times that of nuclear matter density. 

Using a microscopic EOS for pure neutron matter, static properties of non-rotating neutron stars 

such as masses and radii are evaluated. The resulting maximum masses of neutron stars using 
different interactions near 2Mʘ are found to be in reasonable agreement with the measured ones 

PSR J1614−2230 (with Mmax = 1.97 ± 0.04 Mʘ) and PSR J0348+0432 (with Mmax = 2.01 ± 0.04 

Mʘ). 

Keywords: Pure neutron matter, three-body force, contact term, neutron star properties. 

 

Introduction: 

The equation of state (EOS) for neutron star 

matter and infinite nuclear matter has been 
intensively studied for many years (see, for 

example, Refs. (Pethick, et al., 1995; Hansen, 

et al., 1995). A correct description of the EOS 
would have far reaching consequences for 

topics ranging from the cooling of neutron 

stars (Pethick, et al., 1995; Prakash, 1994) to 

the heavy ion collision physics (B.-A. Li, C.M. 
Ko and Ren, Z. 1997). Furthermore, 

experiments of radioactive ion beam (Tanihata, 

1995; Hansen, et al., 1995). have provided 
new information on the structure of unstable 

nuclei far from equilibrium. The latter may 

open the possibility of extracting information 
on the EOS for asymmetric matter and the 

density dependence of the nuclear symmetry 

energy. Moreover, neutron stars are 

macroscopic objects where the stability is 
guaranteed by the Pauli principle of nucleons 

(together with a repulsive short-range 

interaction). Therefore, the structure of a 
neutron star is dictated by the strong 

interaction (and, of course, gravity). The key 

ingredient that enters the stability condition is 

precisely the equation of state (Leupold, et al., 

2011).   

Recently, high-quality observational data of 
neutron stars set new stringent constraints for 

the EOS of cold and dense matter, otherwise 

inaccessible by experiment. The masses of two 
heavy pulsars have been determined with high 

precision. One of those is the radio pulsar 

(PSR) J1614−2230 with a mass M = (1.97 ± 

0.04) Mʘ (Demorest, et al.,  2010). and the 
other is the radio pulsar PSR J0348+0432 

accurately determined mass with M = (2.01 ± 

0.04) Mʘ (Antoniadis et al., 2013(. where Mʘ 

denotes the mass of the sun. Only a 

sufficiently stiff EOS can support such neutron 

stars against gravitational collapse. Whereas 
neutron star radii are much less accurately 

known, the combination of available data 

makes these objects nonetheless an 

indispensable tool to constrain possible EOS 
(Hell, et al., 2014). 

(Tews et al., 2013). have done 

perturbation-theory calculations for pure 
neutron matter (PNM) with nuclear 

interactions derived from chiral perturbation 

theory including the full next-to-next-to-next-

to-leading order (N
3
LO) contribution, with 
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three- and four-body forces. Compared to 

calculations with three-body interactions 
defined only to next-to-next-to-leading order 

(NNLO), the inclusion of all N
3
LO diagrams 

was found to be very important for nuclear 

structure and reactions. Their results provide 
constraints for the nuclear equation of state 

and for neutron-rich matter in astrophysics. In 

the present work, the N
3
LO and NNLO 

potentials complemented by 

phenomenological Urbana Three body forces 

(TBFs) (Baldo, et al., 2008). instead of chiral 
three-nucleon forces, have been applied in 

calculations to neutron matter.  

In this work we will derive the EOS of 

PNM by many-body theory, derived from 
different realistic nucleon-nucleon (NN) 

interactions such as the CD-Bonn potential 

(Machleidt, 2001). the N
3
LO potential (Entem, 

et al., 2003). and the Argonne V18 potential 

(Wiringa, et al., 1995). The many-body 

approaches are used, as the Brueckner-
Hartree-Fock (BHF) approach with the 

inclusion of three-body force (Baldo, et al., 

2008). or contact-term interaction to give more 

repulsive EOS (Khaled et al., 2013). 
The plan of the paper is the following.  The 

main features of BHF approach used in this 

work including two types of three-body forces 
are shown in the following section. The results 

for the neutron matter equation of state are 

presented and discussed in Sec. 3.  In Sec. 4 

neutron star matter is examined and discussed 
in view of the new observational constraints. 

Finally, the conclusions and perspectives for 

the present work are outlined in Sec. 5. 

BHF approach: 

One main feature of the BHF approach to 
nuclear matter is that the binding energy and 

related quantities such as the self-energy, i.e. 

mass operator, which can be developed 
according to the so-called hole-line expansion. 

Its expression is 
 
                                      

          (1)  

                                        

where the subscript A means that the G-matrix 

has to be anti-symmetrized.  
The auxiliary single-particle energy e(k) is 

defined below according to the scheme of the 

iterative solution of the Bethe-Goldstone 

equation. If one chooses only U (k) =Re Σ(k,e) 

as auxiliary potential, then single-particle 
energy has the form: 
 

      
     

  
                                                          (2) 

 

First we solve the Bethe-Goldstone equation 
 

           
              

  

                
          

        (3) 

 

where V is the bare nucleon-nucleon 

interaction, ω = e(k) + e(k`) is the starting 

energy, and Q is the Pauli operator, which 
prevents two particles to scatter inside the 

Fermi sphere. Using the continuous choice 

(Jeukenne et al., 1976). the auxiliary potential 
U(k) has been self-consistently evaluated 

along with the G-matrix from Eq. 3. 

Furthermore, within BHF approach, one can 

easily evaluate the binding energy per nucleon 
for nuclear matter: 
 

  
    

 
   

 

 

  
 

  
 

 

  
                                

      (4) 

 

where kF is the Fermi momentum. 

We use two methods to make the EOS for 
pure neutron matter be more repulsive. First 

method is done by adding the three-body-
force. The phenomenological TBF model 

consists of an attractive term     
   due to two-

pion exchange with the excitation of an 

intermediate Δ-resonance, and a repulsive 

phenomenological term     
    

                                                                                                                                   
(5)

                        
 

Where Vijk is the three body interaction, the 

first term is the so-called two-pion exchange 
contribution. It is a cyclic sum over the 

nucleon indices i, j, k of products of anti-

commutator { , } and commutator [ , ] terms 
 

    
                             

 

 
                           (6)

   

Where: 
                                                   (7) 

 

is the one-pion exchange operator, σ and τ are 

known as the Pauli spin and isospin operators, 
and 
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is called the tensor operator. Both Y(r) and 
T(r) are the Yukawa and tensor functions 

associated to the one-pion exchange as in the 

two-body potential. The repulsive term is 

written as. 
 

    
             

                                      

(8) 
 

The strengths A and U are parameters that in 
the present work are adjusted to reproduce the 

exact saturation point of symmetric nuclear 

matter. 

We introduced the Urbana three-nucleon 
model within the BHF approach. To 

incorporate the TBF in the Brueckner scheme 

we followed the method of (Lejeune et al., 
1986). The TBF is reduced to an effective two-

body force by averaging on the position of the 

third particle, assuming that the probability of 

having two particles at a given distance is 
reduced according to the two-body correlation 

function. The resulting effective two-body 

force is of course density dependent. We have 
adjusted the parameters A and U in order to 

reproduce the correct saturation point of 

symmetric nuclear matter and the EOS 
become much more repulsive at high density, 

since the high density region is needed in 

neutron star studies. 

The second method to achieve saturation in 
nuclear matter is the effective interaction or 

the self-energy of BHF calculations by a 

simple contact interaction, which we have 
chosen following to the notation of the Skyrme 

interaction to be in the form (Gögelein et al., 

2009). 
 
  

 
     

 

 
      

 

  
   

                                                   

(9) 
 

where ρ is the density and t0, t3 and α are 
free parameters. For symmetric nuclear matter 

with α = 0.5, we have fitted t0 and t3 in such a 

way that BHF calculations plus the contact 
term (CT) yield the empirical saturation point 

for symmetric nuclear matter. In Table (1) we 

show the values of t0 and t3 for CD-Bonn 
potential, N

3
LO potential and Argonne V18 

potential.  

EOS for pure neutron matter: 
The energy per nucleon of neutron matter is 

the only input required for determining the 

mass-radius relationship for neutron stars, and 

hence the ranges of physically allowable 

neutron star masses. In Figure 1. we show the 
results for the energy per nucleon in the case 

of a system composed of neutrons only. For 

three choices of the NN potential, curves of 
EOS with two types TBF are displayed 

supplemented to BHF approach. When 

phenomenological TBF are used, the 
parameters A and U are fixed by the 

calculation of saturation properties in the 

symmetric case.  

 
 

 

 
 

 

 

 

 

 

 

Figure 1.  The equation of state E/A in MeV for 

pure neutron matter as a function of density ρ in 

fm-3 for different potentials. The potentials 
employed are the CD-Bonn + TBF (solid line), the 

CD-Bonn + CT (dotted line), N3LO + TBF (short 

dashed line), N3LO + CT (dot-dashed line), the 

Argonne V18 potential + TBF (double dot-dashed 

line) and Argonne V18 potential + CT (double 

dashed dot line). 
 

Table I: The values of the parameters t0 and t3 that 

are used to fit the saturation point. 

The introduction of TBF does not change 
qualitatively the density dependence of E/A 

but makes the EOS more stiff. The same 
behavior is noticed when contact interaction is 

added to the effective interaction to yield the 

empirical saturation point for symmetric 
nuclear matter with the same parameters 

defined in Table I.   

We find agreement at low densities 
between all interactions extend to very high 

densities especially for CD-Bonn + CT and 

N
3
LO+ CT presented by dotted and dot-dashed 

Parameters CD-Bonn N
3
LO Arg. V18 

t0 -136.2609 -131.8981 -181.4014 

t3 2440.734 2538.8274 2689.352 
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lines and they are non-local potentials.  

In contrast to EOS results with 
supplemented phenomenological terms, there 

are agreements at low densities between all 

interactions because the strong tensor effect in 

the 
3
S1-

3
D1 channel is absent. While, there are 

noticeable differences at very high densities 

for all interactions. The EOS for the Argonne 

V18 + CT appears the most repulsive than the 
other potentials. Chiral N

3
LO + TBF EOS that 

seem to provide a very soft pure neutron 

matter EOS. Moreover, there is another 
indication one can see it from Figure 1. We 

observe that the EOS for pure neutron matter 

takes only positive values which means that it 

is unbound. The energy per nucleon is rising 
approximately monotonically with increasing 

density, which is in agreement with the many-

body calculations done by (Kohno, 2013).  

Neutron star structure:  

The structure of a neutron star is 
characterized by its mass and radius. 

Additional parameters of interest are the 

moment of inertia and the crust thickness; 
these are important for the dynamics and 

transport properties of pulsars. In the present 

work, we assume that a neutron star is a 

spherically symmetric distribution of mass in 
hydrostatic equilibrium. The effects of 

rotations can be neglected; assuming there is 

no magnetic field. Then the equilibrium 
configurations are simply obtained by solving 

the Tolman – Oppenheimer - Volkoff (TOV) 

equations [Oppenheimer et al., 1939; Tolman, 
1934). 
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                                                                           (11) 

 

where P(r) and ρ are the pressure and 

density respectively at radius r, m(r) is the 

gravitational mass inside r, G = 1.327 × 10
11

 
km

3
/(Mʘ.s

2
) is the universal constant of 

gravitation. The TOV equations are first order 

differential equations, which can be integrated 

by the following boundary conditions: 

m (0) =0.0,  P(R)  = Psurf                             (12) 

The first condition means that the density ρ 

and the pressure P(r) are finite at the center of 

the neutron star, the second condition 

determine the pressure at the surface of the 
neutron star. Starting with a central density 

ρ(r=0) ≡ ρc the solutions of these equations are 

obtained by integrating them out from the 

neutron-star center till its edge where P is zero. 
This gives the stellar radius R and the 

gravitational mass is then 

 

                      
 

 
              (13) 

 

It turns out that the mass of the neutron star 

has a maximum value as a function of radius 

(or central density) above which the star is 

unstable against collapse to a black hole. The 
value of the maximum mass depends on the 

nuclear EOS (Taranto, et al., 2013). 

For the outer part of the neutron star (ρ < 
0.001 fm

-3
) we have used the equations of state 

by (Baym et al., 1971). whereas for the 

middle-density regime (0.001 fm
-3

< ρ < 0.08 
fm

-3
), the results of (Lorenz et al. 1993). are 

used. Furthermore the present equations of 

states for pure neutron matter with the high-

density EOSs (ρ > 0.08 fm
-3

) employed to 
describe the core of the neutron star. 

  
 
 
 
 
 

 

 

 

 

Fig 2.  Predicted mass-radius relations of neutron 

stars as a function of the stellar radius in km for 

different potentials. The potentials employed are 

the CD-Bonn + TBF (solid line), the CD-Bonn + 

CT (dotted line), N3LO + TBF (short dashed line), 

N3LO + CT (dot-dashed line), the Argonne V18 

potential + TBF (double dot-dashed line) and 
Argonne V18 potential + CT (double dashed dot 

line). 

Figure 2. shows the calculated mass-radius 

relations of neutron stars. Consistent with the 

EOSs in Figure 1, the maximum mass of the 
neutron star and the corresponding radius 

given by N
3
LO+TBF are the smallest, and 

those obtained by Argonne V18 + CT are the 

largest. The results for CD-Bonn +CT are 
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similar to N
3
LO+CT but its calculations for 

both mass and radius are a little smaller than 
V18 + CT. In contrast, when the EOS results 

are supplemented by phenomenological TBF 

terms, there are differences observed in the 

maximum values of mass. 
Figure 3. displays the neutron star masses 

as a function of the central density ρc of the 

star, with several effective interactions 
mentioned above. From Figure 3, it can be 

seen that the N
3
LO + TBF interaction exhibits 

the smallest maximum mass at the largest 
central density ρmax.  Table II shows the 

maximum mass limits Mmax, the radius R and 

the corresponding central densities ρmax 

extracted from Figures 2 and 3.  

From Table II, one finds a maximum mass of 
neutron star. 
 

               
 

at a central density ρc/ ρ0=25 with a radius R = 

6.611 km for CD-Bonn + TBF model. Also we 

find a maximum mass of neutron star. 
 

                
 

at a central density ρc/ ρ0=11 with a radius R = 

9.469 km for CD-Bonn + CT model. In the 

case of N
3
LO+ TBF, one notes a maximum 

mass of 
 

                
 

at a central density ρc/ ρ0 = 28 with a radius R 

= 6.271 km. If we use N
3
LO+ CT, we find a 

maximum mass of 
 

               
 

at a central density ρc/ ρ0=11 with a radius R = 

9.559 km. In the case of Argonne V18 + TBF, 
we find a maximum mass of neutron star. 
 

               
 

at a central density ρc/ ρ0=22.5 with a radius R 
= 6.908 km. Lastly, in the case of Argonne V18 

+ CT a maximum mass of neutron star has the 

value 

               
 

at a central density ρc/ ρ0=11 with a radius R = 

9.481 km. 

 

 

 

 

 

 

 

 

 
Figure 3. neutron star gravitational masses MG 

(in units of Mʘ) as a function of the central 

density ρc in units of gm/cm
3
 for different 

potentials. The notation are the same as Figure 

2. 

Finally one can see from the figures (2 and 

3) that neutron stars properties calculated with 
a stiff equation of state (e.g., CD-Bonn + CT, 

N
3
LO + CT and Argonne V18+ CT) have 

greater maximum masses than neutron stars 
derived from a soft equation of state. 

Furthermore neutron stars derived from a stiff 

equation of state have a lower central density 
and larger radius than do neutron stars of the 

same mass computed from a soft equation of 

state. 

 

Table II: The maximum mass, radius and ρc/ ρ0 of 

neutron star for different models. 

Conclusion:  
We studied neutron star properties, in 

particular NS’s maximum masses and radius 
using the BHF approximation with exact 

Pauli’s operator with the inclusion of two 

types of three body forces. The three body 

forces used are the phenomenological TBF and 
a simple contact term added to the effective 

interaction. It is found that neutron star 

properties are sensitive to microscopic model 
calculations, this means that the maximum 

masses and radii depend on the stiffness of the 

suggested EOS. Neutron star properties 
calculated with a stiff EOS have a lower 

Model Mmax (Mʘ) Radius (km) ρc/ ρ0 

CD-Bonn +TBF 1.674 6.611 25 

CD-Bonn + CT 1.977 9.469 11 

N
3
LO+ TBF  1.605 6.271 28 

N
3
LO + CT 1.959 9.559 11 

Arg. V18 + TBF 1.741 6.908 22.5 

Arg. V18 + CT 2.102 9.481 11 
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central density, a larger radius than stars of the 

same mass computed from a soft EOS. 
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 الملخص العربى

 

 معادلة الحالة للوسط النيوترونى وخواص النجوم النيوترونية

 
 نبيل نورالدين عبد اللاه، عماد سلطان، هدى محمد أبوالسباع، خالد صابر أحمد حسانين

 
فيرمى 5.1بالوسط النيوترونى الخالص عند الكثافات العالية التى تصل الى تم فى هذا البحث حساب معادلة الحالة الخاصة 

-3
 

فوك مضافا إليه القوى بين ثلاث جسيمات وقد تم استخدام ثلاثة  –هاترى  -عند درجة حرارة الصفر باستخدام تقريب بروكنر

 neutron)ص النجوم النيترونية ومن ثم قمنا بحساب خوا. N3LOسى دى بون  وكذلك جهد ، 51جهود مختلفة هى الارجون 
stars properties ) مثل حساب الكتلة العظمى للنجوم النيترونية وكذلك حساب أنصاف أقطار هذه النجوم وتأكدنا انه عند

استخدام معادلة للحالة تعطى قيما عالية للتنافر بين الجسيمات فاننا بذلك نحصل على نجوم نيوترونية لها كتلة عظمى أكبر 

حصلنا في هذا البحث على كتلة  .قطر أكبر من تلك عند استخدام معادلة للحالة تعطى قيما أقل للتنافر بين الجسيماتونصف 
 .عظمى للنجوم النيوترونية تقترب من ضعف كتلة الشمس وهذا يتوافق مع القيم العملية المنشورة حديثا

 


